
Sublinear Algorithms September 10, 2015

Lecture 5
Lecturer: Sofya Raskhodnikova Scribe(s): Youngtae Youn, Om Thakkar

1 Yao’s Minimax Principle

What is the best a probabilistic algorithm can do for the worst-case input? Perhaps it might be
easier to show the limitations of a deterministic algorithm on the average over an adversarially
chosen distribution of inputs. Andrew Yao observed these values are one and the same.

- Lance Fortnow∗

1.1 Original Definition

Yao’s minimax principle is a generic tool for proving lower bounds on randomized algorithms. Let P be a
problem with a finite set X of inputs and a finite set A of deterministic algorithms that solve P . For x ∈ X
and A ∈ A, let cost(A, x) denote the cost incurred by algorithm A on input x. It can be measured in terms
of any quantity related to A, such as the running time of A or its space complexity, but for this lecture, we
will measure cost(A, x) in terms of the query complexity of A. The query complexity of an algorithm is the
maximum number of queries it makes on any input. The query complexity of a problem P , denoted q(P),
is the query complexity of the best algorithm that solves P .

As a randomized algorithm for a problem is a probability distribution over the set of deterministic
algorithms that solve the problem, we can regard it as a probability distribution R on A. Let us define
cost(R, x) as

cost(R, x) = E
A
R←A

cost(A, x),

where A
R← A means A is sampled from A according to R. The intrinsic cost of R is defined to be

maxx∈X cost(R, x), that is, the maximum cost of R on any input x ∈ X . The randomized complexity of a
problem can be defined as

min
R

max
x∈X

cost(R, x), (1)

which naturally captures the notion of the intrinsic cost of the best randomized algorithm that solves the
problem.

Similarly, we can measure the distributional complexity of a problem with respect to an input distribution
D. The cost of a deterministic algorithm A with respect to D can be defined as

cost(A,D) = E
x
D←X

cost(A, x).

Given distribution D, the best that any deterministic algorithm can do on D is minA∈A cost(A,D). Hence,
the distributional complexity of the problem can be defined as

max
D

min
A∈A

cost(A,D), (2)

which naturally captures the notion of the worst cost guaranteed by finding a good deterministic algorithm
that solves the problem.

Yao’s minimax principle states that, for any problem P , both (1) and (2) are equal, i.e.,

max
D

min
A∈A

cost(A,D) = min
R

max
x∈X

cost(R, x) (3)

∗From his blog post at http://alturl.com/i2ri7

1

which can be proved by applying von Neumann’s Min-Max theorem for zero-sum games. Dropping off maxD
and minR from both sides respectively leads to an interesting inequality

min
A∈A

cost(A,D) ≤ max
x∈X

cost(R, x), (4)

which naturally lower bounds the randomized complexity for P . If one can cleverly come up with a suitable
distribution D on the inputs for P and prove that every deterministic algorithm that solves P incurs at least
cost C on the distribution D, it follows that the randomized complexity of P is at least C. Observe that
the power of this technique lies in the fact that one can choose any distribution D, and the lower bound is
calculated by comparing the costs of all deterministic algorithms for the problem on D.

1.2 Yao’s Principle in Property Testing

The following two statements are equivalent:

1. For any probabilistic algorithm A having query complexity q, there exists an input x such that

Pr
coin tosses of A

[A(x) is wrong] > 1/3.

2. There is a distribution D on the inputs such that for every deterministic algorithm having query
complexity q,

Pr
x
D←X

[A(x) is wrong] > 1/3.

We will use the second statement for proving lower bounds in property testing.

2 Proving Lower Bounds in Property Testing

In this section, we review three examples where Yao’s minimax principle is applied to prove lower bounds in
property testing.

2.1 A Lower Bound for Testing 1∗

Theorem 1. Given a string of n bits, where n ≥ 1, any ε-tester for 1n requires Ω(1/ε) queries.

The gist of the proof is that, by Yao’s minimax principle, one can devise an input distribution D on
which every deterministic algorithm with query complexity o(1/ε) fails. For this purpose, we define the
input distribution as follows [1]:

The input to the tester is an n-bit string. A yes instance is a string of 1n. The input can be divided
into 1/ε blocks where each block is of length εn. Let yi be an n-bit string where all 1’s in the ith block are
flipped to 0’s. Hence,

1n :

1st︷ ︸︸ ︷
1 · · · 1

2nd︷ ︸︸ ︷
1 · · · 1

3rd︷ ︸︸ ︷
1 · · · 1 · · ·

1
ε
th︷ ︸︸ ︷

1 · · · 1
y1 : 0 · · · 0 1 · · · 1 1 · · · 1 · · · 1 · · · 1
y2 : 1 · · · 1 0 · · · 0 1 · · · 1 · · · 1 · · · 1

...
...

...
...

. . .
...

y 1
ε

: 1 · · · 1 1 · · · 1 1 · · · 1 · · · 0 · · · 0

Observe that each yi is ε-far from 1n. We define our input distribution D as:

D =

{
1n, with probability 1/2,

yi, with i uniformly drawn from {1, ..., 1/ε} with probability 1
2(1/ε) .

2

Proof. Fix a deterministic tester A which makes q queries.

1. If A doesn’t accept 1n, it is incorrect with probability at least 1/2, which is larger than 1/3.

2. Otherwise, A accepts the input if all the q queries return 1’s. Even if all the q queries probe distinct

blocks, A can only look in q blocks and thus, it has to accept

(
1

ε
− q

)
number of yi’s. This means

that A is incorrect with probability (
1

ε
− q) ε

2
. If q <

1

3ε
, then A’s probability of failure is greater than

1

3
.

We have shown that q <
1

3ε
is not enough to guarantee that Prx∼D[A(x) is wrong] < 1/3. By Yao’s minimax

principle, it means for any randomized algorithm R with query complexity q < 1
3ε , there exists an input

x ∈ X which doesn’t guarantee Prcoin tosses of A[A(x) is wrong] < 1/3. Hence, any ε-tester for 1n requires
Ω(1/ε) queries.

2.2 A Lower Bound for Testing Sortedness

In the previous lectures, we covered two different ε-testers for sortedness, with query complexity O
(log n

ε

)
.

One was based on spanners, whereas the other was based on binary search. For all constant ε ≤ 1

2
, it is

shown that Ω(log n) queries are required to decide, with probability at least 2/3, whether the list is sorted or
ε-far from sorted [2, 3]. In this lecture, we prove that a non-adaptive 1

2 -tester for sortedness requires Ω(log n)
queries. Without loss of generality, we assume that n is a power of 2.

Theorem 2. A
1

2
-tester for sortedness requires Ω(log n) queries.

For a proof based on Yao’s minimax principle, we need an input distribution defined on lists which are
1
2 -far from sorted. Consider the recursive definition of log n lists `1, ..., .`logn of length n.

1. `1 is a list which consists of only 1’s in the first half and only 0’s in the second half.

2. For `i+1, where i ≥ 1, shrink each run of the same number in `i by half to generate a list L of length
n

2
. Make a duplicate copy L′ of L, increase each element in L′ by 2i−1, and concatenate L to L′ to

yield `i+1.

For example, Figure 1 contains the desired lists for n = 16.

Figure 1: log n lists for proving a lower bound for the query complexity of a 1/2-tester for sortedness

Define an input distribution D in which each list `i has a probability of 1
logn . These lists have two useful

properties:

3

• All lists are 1
2 -far from sorted. Each `i, for i such that 1 ≤ i < log n, contains 2i runs†. For 1 ≤ k ≤ 2i−1,

replacing each (2k)
th

run with (2k − 1)
th

run makes the list sorted.

• For i, j such that 1 ≤ i < j ≤ n, every pair (xi, xj) is violated in exactly one list above. This property
directly follows from the construction. For example, consider the pair (x3, x5) in the above given lists.
It is (1,1) in `1, (1,0) in `2, (0,2) in `3 and (2,3) in `4. Hence, the pair (x3, x5) is only violated in `2.

Observe that ‘≤’ is a transitive relation. If a ≤ b and b ≤ c, then a ≤ c. Consider three indices i, j, k such
that 1 ≤ i < j < k ≤ n. As xj lies between xi and xk, if a pair (xi, xk) is violated, it means either (xi, xj)
or (xj , xk) is violated. Hence, if we query q positions (a1, ..., aq) of strictly increasing indices, we only have
to check whether any of the q − 1 pairs (xa1 , xa2), (xa2 , xa3), ..., (xaq−1

, xaq) is violated.

Proof. Fix a deterministic algorithm A that probes q positions when the input is drawn from D. These q
queries yield q − 1 pairs of consequtively queried positions. The algorithm rejects the list when it sees a
violated pair. As every violated pair is observed in exactly one list, q queries can help the algorithm reject
at most q − 1 inputs. This amounts to a probability of at most q−1

logn for the algorithm to be correct. As

all the input lists are 1
2 -far from sorted, A must reject all of them with probability at least 2/3. It means

q−1
logn ≥

2
3 , which implies that q = Ω(log n).

2.3 A Lower Bound for Testing Monotonicity on a Hypercube

We finally review the lower bound on the query complexity of testing monotonicity on a hypercube. [4]

Theorem 3. Every non-adaptive tester with 1-sided error for monotonicity of functions f : {0, 1}n → {0, 1}
requires Ω(

√
n) queries.

A tester with 1-sided error accepts f if it detects no violated pair (f(x), f(y)), where x, y ∈ {0, 1}n. For
x = (x1, ..., xn), we define a function fi for i ∈ {1, ..., n} as follows

fi(x1, ..., xn) =


1 if ||x|| > n/2 +

√
n

0 if ||x|| < n/2−
√
n

1− xi otherwise

where ||x|| denotes its Hamming weight.

Figure 2: Pictorial depiction of fi

In Figure 2, each point k in the green band of width 2
√
n has fi(k) = 1−xi, where xi is the ith co-ordinate

of k. Each point ` below this band has fi(k) = 0 and each point m above the band has fi(m) = 1. Consider
an edge from a = (x1, ..., xi−1, 0, xi+1, ..., xn) to b = (x1, ..., xi−1, 1, xi+1, ..., xn). It is easy to see that this

†A run is a sequence of more than one consecutive identical numbers.

4

edge is violated only when both a and b are in the green band. As the green band amounts to a constant
fraction of vertices in {0, 1}n, each fi, i such that 1 ≤ i ≤ n, is ε-far from monotone, for some constant ε > 0.

The following lemma immediately implies Theorem 3:

Lemma 4. For every non-adaptive monotonicity tester with query complexity q, there exists an index i ∈
{1, ..., n} such that the tester detects a violation in fi with probability at most O(q/

√
n).

Before proving this lemma, we briefly describe the connection between Lemma 4 and Theorem 3. Suppose
we show that, for a deterministic tester A that makes q queries, the number of functions for which A reveals
a violation is O(q

√
n). Then, by an averaging argument, we can guarantee that there exists an fi, where

i ∈ {1, . . . , n}, for which A detects a violation with probability at most O(q/
√
n). As a result, q must be

Ω(
√
n) to guarantee that A detects a violation in fi with constant probability.

Proof. For the function fi, consider two vertices u and v in the green band that differ in the ith coordinate.
Without loss of generality, we assume that ith coordinate of u is 0 while that of v is 1. As fi(u) = 1 and
fi(v) = 0, it is a violated pair by the definition of fi. Hence, any tester detects a violated pair in fi only
when it queries such a pair of vertices in the green band.

Let Q, such that |Q| = q, denote the set of queried vertices in the green band. We can consider Q as a
graph where two vertices w and w′ are connected by an edge if w′ is obtained by changing exactly one bit
in w. This graph has a spanning forest, and every violated pair must be in the same tree as there is a way
to get one vertex from the other by a series of bit transformations, each of which are connected by an edge
in Q. Also, as the violated pair differs in fi at each vertex in the pair, there must exist adjacent vertices on
the path between any violated pair that differ in their respective values for fi. For any spanning forest of Q,
the maximum number of edges possible in it is q− 1. Also, as every violated pair lies in the green band, the
maximum distance between any 2 violated vertices is 2

√
n. Hence, the total number of functions for which

the queries reveal a violation is at most ((q − 1)× 2
√
n), which is O(q

√
n).

References

[1] Noga Alon, Michael Krivelevich, Ilan Newman and Mario Szegedy. Regular Languages are Testable with
a Constant Number of Queries, SIAM J. Comput. 30(6): 1842-1862 (2000)

[2] Eldar Fischer. On the strength of comparisons in property testing, Inf. Comput. 189(1): 107-116 (2004)

[3] Funda Ergün, Sampath Kannan, Ravi Kumar, Ronitt Rubinfeld and Mahesh Viswanathan. Spot-
Checkers. J. Comput. Syst. Sci. 60(3): 717-751 (2000)

[4] Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, Ronitt Rubinfeld, and Alex Samorod-
nitsky. Monotonicity testing over general poset domains. STOC 2002: 474-483

5

