
Sublinear Algorithms September 22, 2015

Lecture 7
Lecturer: Sofya Raskhodnikova Scribe(s): Ishan Behoora, Ramesh Krishnan

Today, we will see how to prove lower bounds using communication complexity. The main idea is
to use known lower bounds for other models of computation and prove a reduction. This method of
proving lower bounds using communication complexity was introduced by Blais et al. [1].

1 Randomized Communication Complexity model

In the randomized communication complexity model, there are two parties, Alice and Bob, wishing to
compute some function. Alice has an input x and Bob has an input y. In addition, both of them have
access to a shared random string. The goal is to compute a desired function C(x, y), while minimizing
the number of bits exchanged between the parties. The communication complexity of a given protocol is
defined as the maximum number of bits exchanged by the protocol and the communication complexity
of a function C, denoted R(C), is the communication complexity of the best protocol for computing C.

Note that this model has no cryptographic considerations as both parties just want to compute C
and this can trivially be achieved by communicating at most min(x, y) bits. In addition, only the com-
munication between the parties is charged in communication complexity model and local computation
at each party is not charged.

We will use reductions to other problems with known lower bounds in Randomized Communication
Complexity (RCC) model to prove lower bounds for some property testing algorithms. An important
aspect of such reductions is that they are unconditional and are thus not dependent on conjectures such
as P ! = NP . We now illustrate the technique using the following example problem.

2 Set Disjointness DISJk in RCC model

A good example of a problem in RCC model is the set disjointness problem. In this problem, both Alice
and Bob are given two k element sets from the universe [n] and they have to determine if their sets are
disjoint. Formally, Alice has a set S where S ⊆ [n], |S| = k and Bob has a set T where T ⊆ [n], |T | = k.
They have to compute the function DISJk(S, T), which is defined as follows:

DISJk(S, T) =

{
accept if S ∩ T = φ

reject otherwise.

The lower bound for this problem was proved by H̊astad and Wigderson [3].

Theorem 1 (H̊astad and Wigderson [3]). R(DISJk) ≥ Ω(k),∀k ≤ n
2 .

3 Testing k-parity of boolean functions

We will use the known lower bound for Set Disjointness to prove lower bounds for testing k-parity of
boolean functions. A linear functions over the finite field F2 is defined as follows.

Definition 2. A Boolean function f : {0, 1}n → {0, 1} is linear (also called parity) if f(x1, . . . , xn) =
a1x1 + a2x2 + . . .+ anxn where a1, a2, . . . , an ∈ {0, 1}.

The addition operation here is modulo 2 operation (unlike the conventional addition). Note that
there is no free term because the problems are equivalent for testing linearity. Linear function can also
be defined in an alternate way.

Definition 3. A linear Boolean function f(x1, . . . , xn) = χS(x) =
∑
i∈S

xi for some S ⊆ [n].

1

We now define k-parity functions.

Definition 4. A Boolean function f : {0, 1}n → {0, 1} is k-parity if f(x) = χS(x) =
∑

i∈S xi for some
S ⊆ [n] such that |S| = k, x ∈ {0, 1}n.

The problem of property testing k-parity is as follows: Given a Boolean function f and an integer
k as input, is the function k-parity or ε-far from k-parity (i.e., at least ε2n values need to be changed
to make it a k-parity)? Chakraborty et al. [2] gave a tester for k-parity with running time O(k log k).
Blais et al. [1] proved a lower bound of Ω(min(k, n− k)) for this problem.

We will look at the lower bound of Ω(k) for k ≤ n
2 . For this we will use the following.

Claim 5. Two different linear functions χS(x) and χT (x) over x ∈ {0, 1}n such that S 6= T differ on
half of the values of x.

Proof. Let i be an element on which χS and χT differ. Without loss of generality, assume i ∈ S \ T .
Pair all the n-bit strings as (x, x(i)) where x(i) is x with the ith bit flipped. For each such pair, it can be
seen that χS(x) 6= χS(x(i)), but χT (x) = χT (x(i)). So, χS and χT differ on exactly one of x, x(i). Since
all x’s are paired up χS differs from χT on exactly half of the values.

Corollary 6. A k∗-parity function where k∗ 6= k is 1
2 -far from a k-parity function

3.1 Reduction from DISJk/2 to Testing k-Parity

Now, we prove a reduction from the Disjointness problem to the problem of testing k-parity. Let Tk be
the best tester for the k-parity property with ε = 1

2 . Let q be the query complexity of Tk.

Lemma 7. The query complexity of testing k-parity, q = Ω(k).

Proof. We will construct a communication protocol for DISJk/2 that uses a reduction to Tk and has
the query complexity 2q.

Let S and T be the sets with Alice and Bob respectively such that S, T ⊆ [n] and |S| = |T | = k
2 .

Alice computes f(x) = χS(x) and Bob computes g(x) = χT (x) for some x ∈ {0, 1}n. The working of
the tester is public knowledge, i.e., known to both Alice and Bob. The input to the tester is generated
from the shared random string. These are the steps that don’t require any communication.

The communication kicks in when Alice and Bob compute f(x) and g(x) respectively and commu-
nicate the results to each other. Thus, 2 bits are exchanged for each query to the tester, and hence the
communication complexity is 2q.

Define function h : {0, 1}n → {0, 1} as h(x) = (f(x) + g(x)) mod 2. h(x) is passed as input to the
tester T .

Claim 8. h is k-parity if S ∩ T = Φ and k′-parity for k′ 6= k otherwise.

Proof. We have
h = (f + g) mod 2 = (χS + χT) mod 2 = χS∆T .

Also, |S∆T | = |S|+ |T | − |S ∩ T |. Thus,

|S∆T |

{
= k if S ∩ T = Φ

≤ k − 2 if S ∩ T 6= Φ
.

Hence h is k-parity if S ∩ T = Φ and k′-parity for k′ ≤ k − 2 otherwise. This completes the proof of
the claim.

2

By Corollary 6, any function with k′ parity where k′ 6= k is 1
2 -far from k-parity function. With high

probability, this function is rejected by the tester Tk. Thus S and T are disjoint if Tk accepts and not
disjoint if Tk rejects.

This completes the construction of the reduction. The lower bound follows from Theorem 1.

2q ≥ R(DISJk/2) ≥Ω

(
k

2

)
for k ≤ n

2
[By Theorem 1]

⇒ q =Ω(k) for k ≤ n

2
.

This completes the proof of the lemma.

3.2 Notes on lower bound for adaptive testers

In the communication protocol we described, Alice and Bob communicate the results of their functions
to each other, i.e., there are 2 bits of communication for each query. This is required if the tester is
adaptive because the each query depends on the results of the previous queries, and hence there is an
imminent need for both the parties to know the result of each query. This is the intuition behind the
need for both the parties to communicate their results to each other after every query. On the other
hand, if the tester is nonadaptive, then one way communication is sufficient, i.e., only Bob needs to
communicate his result to Alice and Alice is not required to send her result to Bob. In this case, at the
end of computation, Alice can send the result of the computation to Bob and the reduction still holds.

References

[1] Eric Blais, Joshua Brody, and Kevin Matulef. Property testing lower bounds via communication
complexity. In Proceedings of the 26th Annual IEEE Conference on Computational Complexity,
CCC 2011, San Jose, California, June 8-10, 2011, pages 210–220, 2011.

[2] Sourav Chakraborty, David Garćıa-Soriano, and Arie Matsliah. Nearly tight bounds for testing
function isomorphism. In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011, pages
1683–1702, 2011.

[3] Johan H̊astad and Avi Wigderson. The randomized communication complexity of set disjointness.
Theory of Computing, 3(1):211–219, 2007.

3

