Lecture 11

Lecturer: Sofya Raskhodnikova

1 Testing Bipartiteness (continued)

1.1 GGR Algorithm

Algorithm 1: GGR Algorithm.

input : ϵ , access to adjacency matrix of a graph G = (V, E), n = |V|**output**: accept or reject

- 1 Pick uniformly and independently at random a sample set S of size $\theta(\frac{1}{\epsilon^2} \times \log \frac{1}{\epsilon})$.
- **2** Query subgraph G induced by S.
- **3** If G' is bipartite, accept; otherwise, reject.

1.2 Analysis

Break S into two sets:

- 1. Learning set L of size $\theta(\frac{1}{\epsilon} \times \log \frac{1}{\epsilon})$.
- 2. Testing set T of size $\theta(\frac{1}{\epsilon^2} \times \log \frac{1}{\epsilon})$.

Definition 1. A node v in V is covered by L if v has a neighbor in L.

Let C be the set of nodes covered by L. To separate L to L_1 and L_2 , and C_1 , C_2 are nodes adjacent by nodes of L_1 , L_2 respectively. $C = C_1 \bigcup C_2$. Figure. 1 shows the relation between L and C.

Figure 1: Learning set L and the set of nodes covered by L

The idea is that to try to catch a violating edge (w.r.t. every partition of L) with both endpoints in C. **Definition 2.** A node v is influential if its degree $deg(v) \ge \frac{\epsilon n}{8}$ **Claim 3.** $Pr[>\frac{\epsilon n}{8}$ influential nodes are not covered by $L] \le \frac{1}{6}$

Lable 1. opportounds of Lowerbounds of both of house			
Violating edges incident to	# of nodes	degree	# of violating edges
influential nodes in R	$\leq \frac{\epsilon n}{8}$	$\leq n$	$\leq \frac{\epsilon n^2}{8}$
non-influential nodes in R	$\leq n$	$\leq \frac{\epsilon n}{8}$	$\leq \frac{\epsilon n^2}{8}$
nodes in L	$\theta(\tfrac{1}{\epsilon} \times \log \tfrac{1}{\epsilon})$	$\leq n$	$O(n) \le \frac{\epsilon n^2}{8}$
nodes in C			$ \geq \frac{\epsilon n^2}{2} - \frac{3\epsilon n^2}{8} \\ \geq \frac{\epsilon n^2}{8} $

 Table 1: Upperbounds or Lowerbounds of sets of nodes

Claim 4. Let BAD_1 be the event that $> \frac{\epsilon n}{8}$ influential nodes are not covered by L. If BAD_1 does not happen then every partition of L induces $\ge \frac{\epsilon n^2}{8}$ violating edges with both end-points in C

Proof. By observation, w.r.t. every partition, there are at least $\geq \frac{\epsilon n^2}{8}$ violating edges.

The upperbounds or lowerbounds of each set of nodes are shown in Table. 1

Fix a partition of L. If defines C_1 and C_2 . View samples from T as pairs (v_1, v_2) , (v_3, v_4) , $(v_{\frac{|T|}{2}-1}, V_{\frac{|T|}{2}})$.

Assuming BAD_1 does not happen:

$$\begin{aligned} \Pr[\text{ no pairs } (v_i, v_{i+1}) \text{ are violating edges with both endpoints in } C] &\leq (1 - \frac{\epsilon}{8})^{\frac{|T|}{2}} \\ &\leq e^{-\frac{\epsilon}{8} \times \frac{|T|}{2}} \\ &\leq e^{-\frac{\epsilon}{16} \times \frac{|T|}{|L|} \times |L|} \\ &\leq \frac{2^{-|L|}}{6} \end{aligned}$$

By a union bound over all partition of L, since there are $2^{|L|}$ partitions,

 $Pr[BAD_2] \le 2^{|L|} \times \frac{2^{-|L|}}{6}$, where BAD_2 = there exists a partition of L with no violating edge sampled. $\le \frac{1}{6}$

G is ϵ -far,

$$\begin{aligned} \Pr[G \text{ is accepted }] &\leq \Pr[BAD_1] + \Pr[BAD_2|\overline{BAD_1}] \times \Pr[\overline{BAD_1}] \\ &\leq \frac{1}{6} \times \frac{1}{6} \end{aligned}$$